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Stable and accurate interface conditions based on the SAT penalty method are
derived for the linear advection–diffusion equation. The conditions are functionally
independent of the spatial order of accuracy and rely only on the form of the dis-
crete operator. We focus on high-order finite-difference operators that satisfy the
summation-by-parts (SBP) property.We prove that stability is a natural consequence
of the SBP operators used in conjunction with the new, penalty type, boundary con-
ditions. In addition, we show that the interface treatments are conservative. The
issue of the order of accuracy of the interface boundary conditions is clarified. New
finite-difference operators of spatial accuracy up to sixth order are constructed which
satisfy the SBP property. These finite-difference operators are shown to admit de-
sign accuracy (pth-order global accuracy) when (p− 1)th-order stencil closures are
used near the boundaries, if the physical boundary conditions and interface con-
ditions are implemented to at leastpth-order accuracy. Stability and accuracy are
demonstrated on the nonlinear Burgers’ equation for a 12-subdomain problem with
randomly distributed interfaces. c© 1999 Academic Press

Key Words:high-order finite-difference; numerical stability; interface conditions;
summation-by-parts.

1. INTRODUCTION

Higher order and spectral schemes are ideally suited for resolving problems where high
resolution is essential. Computational aero acoustics (CAA) and computational electro
magnetics (CEM) are two such fields requiring high accuracy to resolve the vastly dis-
parate length and time scales involved. High-order (spectral) schemes easily outperform
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conventional low-order schemes on simple problems, where the physical domain is smoothly
mapped onto the high-order computational space. The high-order convergence rates of these
schemes yield satisfactory results on relatively coarse grids.

A major difficulty in the application of high-order methods to realistic problems is the
issue of applying high-order formulations to complex geometries. Often, generating a rea-
sonable grid around a complex configuration is the most difficult aspect of the solution
procedure. Further constraining grids to be smooth and higher order (necessary for high-
order methods) severely complicates grid generation around complex configurations.

Many high-order practitioners advocate some form of unstructured framework. This
simplifies the grid-generation procedure considerably for complex configurations. Within
the context of unstructured methods there are a variety of different techniques. We choose a
semistructured approach to break the geometry into piecewise smooth “subdomains,” using
quadrilaterals (hexahedron) in two (three) dimensions. Each subdomain is then discretized
with a stable tensor product formulation, and the resulting subdomains are patched together.
Notable examples of this approach include the works of Kopriva [1–3], in the context of
Chebyshev spectral methods, and the works of Hesthaven [4–6], also in the context of
Chebyshev methods.

Our contribution to the semistructured approach is based on an extension of the SAT
method presented in [13]. It is valid for high-order finite-difference (FD) discretizations
and certain spectral formulations (distinct from the works of Kopriva and Hesthaven).
The SAT procedure is apenalty method, where the penalty parameters are determined by
stability considerations or other properties of the numerical scheme. The advantages of the
SAT formulation in one domain are detailed in [13] in the context of high-order FD methods.
Most notably, the SAT procedure assures time stability forsystemsof equations that have a
bounded energy norm. This is not true in general for other high-order FD methods. Indeed,
nonpenalty approaches often lead to nonphysical growth in time for systems of equations,
even though the discretization operator is stable for the scalar case [13]. Second, the SAT
formulation can easily be extended to several space dimensions (via a tensor product) and
to complicated boundary conditions.

In this work, we extend the SAT procedure to the case of multiple domains. We present
the interface-matching conditions which maintain stability, conservation, and accuracy in
multiple domains for all schemes satisfying the semidiscrete summation-by-parts conven-
tion. We note that our method (applied in a spectral context) differs from that of Kopriva
[3], where the interface BC’s conditions are imposed in a strong sense. In fact, we show that
strong imposition of interface BC’s in conjunction with FD may lead to time instabilities.
We also provide a proof (missing in [4]) for stability and time stability of our approach.
For simplicity, the proof is presented for the scalar one-dimensional advection–diffusion
equation, but it can be easily extended to the linearized N-S equations as in [5]. Finally, we
note that our approach is fully conservative. A detailed proof of the Lax–Wendroff theorem
for the penalty approach will appear elsewhere.

In Section 2, we define and describe semidiscrete operators which satisfy the summation-
by-parts convention, including explicit and compact finite difference schemes, as well as
some spectral methods [14]. In Section 3 we present the SAT formulation for multiple do-
mains and derive sufficient conditions for stability and time stability for the linear advection–
diffusion equation. In Section 4 we derive a set of parameters that assures stability, as well
as conservation for the multiple domain case. In Section 5 we present numerical examples
that demonstrate the efficacy of the SAT interface procedure, as well as the inadequacy
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of imposing strong interface boundary conditions. Furthermore, we show that to maintain
global accuracy, interface BC’s must be specified with the design accuracy of the method.
Finally, we present some numerical examples specific to high-order central difference tech-
niques. In Section 6, we present the conclusions. Finally, in the Appendix we present a
detailed proof of the interface stability condition, followed by the stencils used for fourth-
and sixth-order finite-difference schemes.

2. SPATIAL DISCRETIZATIONS

The stable interface conditions presented in this work are valid for spatial discretizations
of arbitrary accuracy. To achieve this generality, the spatial discretizations must be of a
specific form. Fortunately, most numerical schemes can be put into the required form
with only minor modifications. To be more precise we consider discrete spatial derivative
operators with the following properties:

First-Derivative Properties

1. The first-derivative operator defining the numerical derivativeux= [(∂u/∂x)0, . . . ,
(∂u/∂x)N ]T is

Pux − Qu = 0
(1)

Pvx − Qv = PTe,

where u= [u0(t), u1(t), . . . ,uN(t)]T, v= [v(x0, t),. . . , v(xN, t)]T, and vx= [(∂v/∂x)0,
. . . , (∂v/∂x)N ]T. (The vectorv is the exact solution.) The truncation errorTe satisfies|Te| =
O(1x)m, where the quantity1x is defined as the maximum distance between any two
neighboring grid points.

2. The matrixP is symmetric and positive definite(1x)pI ≤ P≤ (1x)q I , wherep and
q are independent ofN with p> 0 andq> 0.

3. The matrixQ is nearly skew symmetric and satisfies the propertyQ+ QT= D, where
the diagonal matrixD has the formdi,i = [−1, 0, . . . ,0, 1] for i = 0, 1, . . . , N. Furthermore,
Q0,0=− 1

2 andQN,N = 1
2.

A spatial operator in the form of Eq. (1), which satisfies properties 1 through 3, is referred
to as an SBP operator [7]. All SBP operators automatically lead to an energy estimate for
periodic solutions to the linear advection–diffusion equation. In the finite-domain case, an
energy estimate exists when an SBP operator is combined with specific boundary treatments.

Discretization operators that satisfy the SBP framework are remarkably general. Kreiss
and Scherer [7] first suggested the use of SBP spatial operators in the context of second-order
central-difference schemes. In Olsson [8–10] and Strand [11], high order finite difference
operators are constructed, based on spatial operators of SBP type. These resulting schemes
are strictly stable, which means that the growth rate of the analytic and semi-discrete solution
is identical.

The precise properties of the matricesP and Q provide a constructive means of for-
mulating boundary closures. A discretization begins with a parameterization of several
points near the boundary of the required accuracy. The parameters are then adjusted so
that they match the precise requirements of theP and Q matrices. Strand [12] used the
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SBP approach to construct stable fourth- and sixth-order central-differencing schemes with
boundary closures of the appropriate order. Carpenter, Gottlieb, and Abarbanel [13] ex-
tended the SBP formalism to compact implicit operators (fourth-order Pad´e operators);
Carpenter and Gottlieb [14] showed that spectral formulations (Galerkin and collocation)
can be cased in the SBP framework. Finally, Carpenter and Otto [15] showed that the SBP
schemes have a natural interface property, and they used this property to derive a class of
multiple-domain schemes referred to as “cyclo-difference” schemes. (The earlier work [15]
required strong imposition of interface data, whereas the present formulation requires only
weak imposition.)

The SBP schemes naturally arise with centered approximations for which the spatial
operator is skew symmetric. A more general class of schemes could be formulated in the
form

du
dx
= P−1(Q+ T)u, (2)

where the matrixT is symmetric negative definite. The general formulation includes the
entire class of central and upwind schemes. The upwind schemes are automatically stable
and accurate because they are obtained by adding a symmetric high-order diffusion operator
to a stable and accurate SBP formulation. We focus, therefore, on the original SBP definition
which includes central, compact, and spectral formulations.

An approach similar to that used on the first-derivative operator can be used for the
second-derivative operator. For example, one can seek two positive-definite matricesL and
R such that

vxx − L−1Rv = O(1x)m

An obvious choice is to takeL = P andR= Q P−1Q so that the second-derivative operator
is obtained by repeated differentiation with the first-derivative operator. For spectral dis-
cretizations, differentiating the data twice with the first-derivative operator is equivalent to
differentiation with an explicitly formed second-derivative operator. As such, the procedure
yields an accurate representation of the second derivative (modulo roundoff errors). Re-
peated differentiation for finite-difference techniques is acceptable but less desirable than
other, more compact formulations. A second derivative formed from two first-derivative
operators is unnecessarily wide and inaccurate. The resulting stencil can produce a solution
with an undamped odd–even mode. For this reason, we seek a second-derivative operator
with the following properties.

Second-Derivative Properties

1. The second-derivative operator that definesuxx is

Puxx − (−STM + D)Su = 0
(3)

Pvxx − (−STM + D)Sv = PTe2,

where the diagonal matrixD has the formdi,i = [−1, 0, . . . ,0, 1], i = 0, 1, . . . , N.
2. The matrixM is positive definite:(1x)mI ≤M ≤ (1x)nI , wherem andn are inde-

pendent ofN with m> 0 andn> 0.
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3. The matrixS is of the form

S= 1

(1x)



s0,0 s0,1 s0,2 s0,3 · · ·
0 1 0

0 1 0
...

0 1 0
0 1 0

· · · sN,N−3 sN,N−2 sN,N−1 sN,N


, (4)

where

Su|0 = vx(x0)+ O(1x)r
(5)

Su|N = vx(xN)+ O(1x)r .

The matrixS is the identity matrix (scaled by the grid spacing), where a discrete represen-
tation of the first derivative replaces the first and last rows.

4. The matrixP is that used in the first-derivative operator.

Explicit forms of the matricesS and M are given in the Appendix for a second-order
explicit discretization. In addition, the matrixS is presented up to sixth order.

3. INTERFACE BOUNDARY CONDITIONS FOR MULTIPLE DOMAINS

Consider the linear advection–diffusion equation

∂U

∂t
+ a

∂U

∂x
= ε ∂

2U

∂x2
, |x| ≤1, t > 0. (6)

Suppose that the equation is discretized by a multidomain technique such that the interval is
divided arbitrarily into two subintervals−1≤ x≤ xi andxi ≤ x≤ 1. On each subinterval, a
discretization is used that satisfies the SBP properties 1 through 3. We propose implementing
the interface boundary conditions by using a penalty treatment of the form

Pl ut + aQl u = εRl u+ σ1el i
(
u|x=xi − v|x=xi

)+ σ2εel i
[
(Dl u)|x=xi − (Dr v)|x=xi

]
(7)

Pr vt + aQr v = εRr v+ σ3er i

(
v|x=xi − u|x=xi

)+ σ4εer i

[
(Dr v)|x=xi − (Dl u)|x=xi

]
,

whereu is a vector of lengthM, u= [u0(t), u1(t), . . . ,uM(t)]T, defined in the left domain at
the pointsxL = [x0=−1, x1, . . . , xM = xi )]T andel i = [0, . . . ,0, 1]T is of dimensionM . In
the right domain,v= [v0(t), v1(t), . . . , vN(t)]T is defined at the pointsxR= [x0= xi , x1 . . . ,

xN = 1)]T ander i = [1, 0, . . . ,0]T is of dimensionN.
The second-derivative matricesP−1

l Rl andP−1
r Rr , as well as the first-derivative matrices

P−1
l Ql andP−1

r Qr , are defined as in Section 2. The matricesDl andDr are any operators
that approximate the first derivative toO(1x)m. The obvious first choice would be to use
P−1

l Ql and P−1
r Qr , but this choice is not essential for accuracy or stability. (In Eq. (7)

we have ignored the physical boundary conditions atx= 1 andx=−1 for the sake of
simplicity.)
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THEOREM3.1. Consider the scheme(7) for the advection–diffusion equation(6). If the
matrices Pl , Ql , Pr , Qr , Rl , and Rr satisfy the first and second derivative properties of
Section2 and

σ3 = σ1− a, σ4 = σ2+ 1, σ1 ≤ a

2
− ε
[
σ 2

2

4αr
+ σ 2

4

4αl

]
, (8)

then(7) is stable.

In the proof which follows, we have without loss of generality considered only the
interface terms and ignored the terms that arise at the physical boundaries. We assume
that the physical boundary conditions are implemented by stable and accurate numerical
procedures. (See Hesthaven and Gottlieb [4] for a possible implementation).

Proof. The proof is based on a simple energy estimate. By premultiplying the equations
by the vectorsuT andvT, respectively, and adding we obtain

d

dt

[‖u‖2Pl
+ ‖v‖2Pr

] = 2uT(εRl − aQl )u+ 2vT(εRr − aQr )v

+ 2σ1ui (ui − vi )+ 2εσ2ui [(Dl u)i − (Dr v)i ]

+ 2σ3vi (vi − ui )+ 2εσ4vi [(Dr v)i − (Dl u)i ],

where‖u‖2Pl
= uT Pl u, and we have definedui , vi , (Dl u)i , and (Dlv)i as u|x=xi , v|x=xi ,

(Dl u)|x=xi , and (Dr v)|x=xi , respectively. The second-derivative properties of Section 2
lead to

uT Rl u ≤ −αl (Dl u)
2
i + ui (Dl u)i (9)

vT Rr v ≤ −αr (Dr v)
2
i − vi (Dr v)i , (10)

where the constantsαl andαr are positive.
By using the first-derivative properties of Section 2 and Eqs. (9) and (10) and neglecting

the physical boundary terms, we obtain

d

dt

[‖u‖2Pl
+ ‖v‖2Pr

] ≤ wT
i Bwi (11)

wherewi = [ui , vi , (Dl u)i , (Dr v)i ], and the interface boundary matrixB is defined by

B =


(−a+ 2σ1) −(σ1+ σ3) ε(1+ σ2) −εσ2

−(σ1+ σ3) a+ 2σ3 −εσ4 ε(−1+ σ4)

ε(1+ σ2) −εσ4 −2εαl 0

−εσ2 ε(−1+ σ4) 0 −2εαr

 . (12)

Straightforward (although tedious) algebra shows that conditions (8) yield a nonpositive
definite matrixB, thus proving stability. Details are presented in Appendix I.

In practice, the values ofσ1 throughσ4 are determined as follows. The parameters
αr andαl are functions from the numerical method and the chosen grid. The diffusion
contribution in the constraint equationσ1≤a/2− ε[σ 2

2/4αr + σ 2
4/4αl ] is minimized for
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σ2=−αr /(αr + αl ), yielding the expressionσ1≤a/2− ε[1/4(αr +αl )]. The valueσ1

determines the dissipation at the interface and also influences the effective CFL of the
numerical scheme. Values ofσ1 in the range−1≤ σ1≤ 0 provide a compromise between
adequate levels of dissipation and acceptable numerical efficiency.

We have shown that the linking of two domains at an interface with the interface conditions
prescribed in Theorem 3.1 is stable in a semidiscrete sense for specific values of the penalty
parametersσ1 throughσ4. The basic methodology can be extended to an arbitrary number
of subdomains without complication. The only constraint is that the numerical method must
satisfy the SBP framework. The methodology does not rely on subdomain size and does not
require the same SBP operator to be used in each domain. In principle, a finite-difference
operator of any order, as well as spectral operators on subdomains of arbitrary size, can
be linked together in a stable manner. Practical details on how to choseσ1 throughσ4 are
included in the results section (Section 6).

In Section 2, we presented the general form of second-derivative operators appropriate
for this work. We then noted two specific derivative operators that satisfy this form. We now
show that both choices for the matricesRl (andRr ) suggested in Section 2 satisfy conditions
(9) and (10) of Theorem 3.1. We start with the first option (i.e.,Rl = Ql P

−1
l Ql ). In this

case, the first derivative matrix in (7) isDl = P−1
l Ql . Thus, the quantityuT Rl u becomes

uT Ql P
−1
l Ql u = uT Ql P

−1
l Pl P

−1
l Ql u

= −(P−1
l Ql u

)T
Pl
(
P−1

l Ql u
)+ ui

(
P−1

l Ql u
)

i
,

where we have used the SBP propertyQ+ QT= D and have ignored the physical boundary
contribution.

We recall now thatPl ≥ (1x)pl so that

uT Rl u = uT Ql P
−1
l Ql u

≤ −(1x)pl |(Dl u)|2+ ui (Dl u)i .

Thus, (9) is satisfied withαl = (1x)pl . A similar result holds forRr with αr = (1x)pr .
The second choice presented in Section 2 for the second-derivative operatorP−1Rl is of

the form of Eq. (3):

P−1Rl = P−1(−ST M + D)S.

For the purpose of proving stability, we relate the two matricesDl = S (in actuality, only
the first and last rows satisfyDl = S; they are, however, the only portions of the matrices
that enter the proof):

uT Rl u = −(Su)T MSu+Ui (Su)i

≤ −(1x)m|Su|2+Ui (Su)i .

Thus, (9) is satisfied withαl = (1x)m.

4. CONSERVATION AT THE INTERFACE

The Lax–Wendroff theorem [16] addresses the complexities encountered in solving non-
linear conservation laws. The theorem states that a convergent numerical approximation
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Ul (x, t), computed with a consistent andconservativemethod, converges to a weak so-
lution of the conservation law. Note that discrete conservation is necessary to satisfy the
conditions of the theorem.

A heuristic definition of conservation (commonly encountered by practitioners) describes
how the numerical flux function “telescopes” across a domain to the boundaries. The total
quantity of a conserved variable in any region changes only as a result of the flux through the
boundaries of the region. We, however, rely on a broader definition of conservation motivated
by the original proof of the Lax–Wendroff theorem. We demand that the numerical flux
telescope across the domain and that all moments of the flux against an arbitrary test function
telescope across the domain. This additional constraint demands an equivalence between
the weak forms of the continuous and discrete operators.

We begin by discussing conservation in a single domain. Consider the nonlinear equation
Ut + Fx = 0 on−1≤ x≤ 1 andt ≥ 0. Note that in the linear case,F =aU and we obtain (6)
with ε= 0. To obtain the weak form of this equation we multiply by an arbitrary test function
φ(x, t) that vanishes on the boundaries. By integrating with respect to space and time we
obtain an integral statement of the original differential equation:

∫ 1

−1
φU dx|t0−

∫ t

0

∫ 1

−1
(Uφt + Fφx) dx dτ = 0.

Now consider the semidiscrete equation given byPUt + QF= 0. Here, we have replaced
the spatial derivativeFx in the continuous case with an SBP derivative operator of order
(1x)r . By multiplying by the discrete vectorφ(xj )=φT (the discrete analog of integration)
and integrating with respect to time, we obtain

φT PU|t0−
∫ t

0

(
UT Pφt + FT Qφ

)
dτ = 0.

Thus, the semidiscrete operator satisfies a weak form similar to that of the continuous
operator and asymptotically approaches the continuous operator in the limit of infinite
spatial resolution. The special form of theP andQ matrices present in the SBP operators
enables the semidiscrete operator to mimic the conservation property of the continuous
operator.

The equivalence between the continuous and semidiscrete operators is more complicated
for multiple domains. The conservation property of the SBP operator does not necessarily
apply at an interface boundary. Under very mild restrictions, however, the SBP interface
operators telescope out to the physical boundaries, as does the continuous operator. Because
conservation is only necessary for the advection terms in the advection–diffusion equation,
we setε= 0 (see Eq. (6)) and prove conservation for a two-domain discretization. We prove
conservation for a general nonlinear flux. Note that the penalty parameters for this nonlinear
case are designated ˆσ1 andσ̂3. The resulting conservation condition obtained in the nonlinear
case is slightly different from that obtained in the linear analysis. This difference results
from different scalings of the penalty parameters.

THEOREM 4.1. Assume the nonlinear equation∂U/∂t + ∂F(U )/∂x= 0 is valid on
the interval−1≤ x≤ 1, t > 0, divided arbitrarily into two subintervals−1≤ x≤ xi and
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xi ≤ x≤ 1. On each subinterval, a discretization is used that satisfies the SBP framework,
and boundary conditions are imposed via penalties in the form

ut + P−1
l Ql F(u) = σ̂1P−1

l el i [F(u(xi ))− F(v(xi ))]
(13)

vt + P−1
r Qr F(v) = σ̂3P−1

r er i [F(v(xi ))− F(u(xi ))],

whereu= [u0(t), u1(t), . . . ,uM(t)]T is defined in the left domain at the pointsxL = [x0=
−1, x1, . . . , xM = xi ]T and el i = [0, . . .0, 1]T is of dimension M with similar definitions on
the right domain. The discretization is conservative provided that the stability condition
σ̂3= σ̂1− 1 is satisfied.

Proof. For multiple domains, we proceed as shown previously in the single-domain
case. Multiplying Eqs. (13) by the vectorsφT Pl andφT Pr , respectively, yields the set of
equations

φT Pl ut + φT Ql F(u) = σ̂1φ(xi )(F(u(xi ))− F(v(xi )))

φT Pr vt + φT Qr F(v) = σ̂3φ(xi )(F(v(xi ))− F(u(xi ))).

Using the properties ofQl andQr we get

φT Pl ut − FT Qlφ + φ(xi )F(u(xi )) = σ̂1φ(xi )(F(u(xi ))− F(v(xi )))

φT Pr vt − FT Qrφ − φ(xi )F(v(xi )) = σ̂3φ(xi )(F(v(xi ))− F(u(xi ))).

By integrating with respect to time and making use of the fact thatφ is continuous at the
interface, we get

φT Pl u|t0+ φT Pr v|t0 =
∫ t

0

(
uT Plφt + FT Qlφ

)
dτ +

∫ t

0

(
vT Prφt + FT Qrφ

)
dτ

+
∫ t

0
φi F(u(xi ))(σ̂1− σ̂3− 1) dτ

+
∫ t

0
φi F(v(xi ))(σ̂3− σ̂1+ 1) dτ.

Obviously, the condition ˆσ3= σ̂1− 1 eliminates the interface terms from the expression and
leaves the desired weak form of the semidiscrete equation. Thus, the theorem is proved.

5. COMPUTATIONAL RESULTS

In this section we present numerical results that demonstrate the efficacy of the methodol-
ogy presented in this paper. We begin by showing that the new interface boundary conditions
ensure stability, while conventional interface treatments do not. We next show that one can
sacrifice, locally, one degree of accuracy when constructing the derivative matricesP, Q,
andR (see Eq. (7)) but not when approximating the matricesDl andDr . Finally, we present
a multidomain test case showing the capabilities of the new interface methodology.
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Stability

We begin by justifying for the use of the SAT boundary conditions. Reference [13] details
the advantages of the SAT procedure for a single domain, noting that the principle advantage
is the guarantee of stability and time stability for the constant coefficient hyperbolic system.
All conventional boundary closures for fourth- or sixth-order central/compact schemes
(no proof, just empirical evidence) lead tosystemenergy growth in time, despite time
stability for the scalar hyperbolic equationUt +Ux = 0. Thus, the SAT procedure and
the projection method [9, 10] are the only know mechanisms for ensuring time stability
for long time integrations of systems of hyperbolic equations for high-order central FD
methods.

The following test problem was used in Ref. [13] to demonstrate the time stability of the
SAT procedure:

∂u

∂t
+ ∂u

∂x
= 0,

(14)
∂v

∂t
− ∂v
∂x
= 0, 0≤ x ≤ 1, t ≥ 0;

u(0, t) = αv(0, t), v(1, t) = βu(1, t), t ≥ 0, (15)

u(x, 0) = sin 2πx, v(x, 0) = −sin2πx, 0≤ x ≤ 1. (16)

For reflection coefficientsα andβ satisfying|αβ|< 1, the solution decays in time, whereas
if |αβ|> 1, the solution grows in time. The case|αβ| =1 is neutrally time stable (theL2

norm of the solution remains constant in time) and provides anextremelysevere test of
the time stability of a numerical method. All conventional boundary procedures display
nonphysical growth in time as|αβ|→1. In addition, merely satisfying the summation
by parts convention for the boundary closure is not sufficient to guarantee time stability.
Both the summation by parts convention and an SAT boundary imposition (or a projection
method) are necessary to ensure time stability for systems of equations [13].

We now extend this analysis to the multiple domain context using Eq. (14) as our test
case. Rather than determining time stability by directly integrating Eq. (14) to long times,
we focus on eigenvalue analysis of the semidiscrete system. (In [13], an equivalence is
established between the two procedures. Specifically, eigenvalues with positive real parts
yield solutions that exhibit nonphysical grow in time.) Figure 1 shows the eigenvalues
from the system study using the sixth-order explicit method. The domain is discretized
using 97 equally spaced points, arranged into 1, 2, 4, and 8 subdomains. The values
α=β = 1 are used, corresponding to the neutrally stable case for which the solution is
u(x, t)= sin 2π(x− t), v(x, t)=−sin 2π(x+ t), 0≤ x≤ 1, t ≥ 0. All eigenvalues are con-
fined to the left-half plane. Experimental tests for the caseα=β = 1− ε confirm that the
rightmost eigenvalue approaches the imaginary axis linearly as the variableε→ 0. Similar
results are obtained for the fourth-order spatial operator. Thus, the fourth- and sixth-order
schemes are time stable, independent of the number of subdomains.

Conversely, Fig. 2 shows the eigenvalues resulting from a conventional imposition of the
interface conditions. (For increased clarity only the 8-subdomains case is shown. Similar
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FIG. 1. Eigenvalues for the hyperbolic system discretized with a sixth-order scheme and the new interface
conditions.

FIG. 2. Eigenvalues for the hyperbolic system discretized with a sixth-order scheme and conventional upwind
interface conditions.



            

352 CARPENTER, NORDSTR̈OM, AND GOTTLIEB

TABLE I

L2 Reflection Coefficient Required

to Maintain Negative Eigenvalues

Domains α

1 1.0
2 0.86
4 0.60
6 0.42
8 0.30

results are obtained with 2, 4, and 6 subdomains.) The interface condition is obtained by
choosing the upwind value from the left and right interface state for the left-moving and
right-moving characteristic functions. (Note that we do not have a proof of conservation
for this procedure.) The physical boundary conditions atx= 0 andx= 1 are imposed via
the SAT procedure to eliminate the obvious single domain instability shown to exist in
Ref. [13]. The “upwind” eigenspectrum has many eigenvalues in the right-half plane and,
thus, will exhibit growth in time of the solution. To quantify the nature of this interface
instability, Table I shows a parametric study inα=β, identifying the maximum value ofα
for which time stability can be ensured. Note that as the number of interfaces increases the
system requires more dissipation (smaller reflection coefficientsα andβ) to ensure time
stability.

This example demonstrates that the new interface boundary conditions are time stable
for the constant coefficient hyperbolic system given by Eq. (14). In addition, inappropriate
treatment of interface boundaries are shown to generate instabilities for systems of equations.
As with the single domain, a summation-by-parts boundary closure, in conjunction with
an SAT penalty treatment for the physical boundary conditions, provides system stability,
where conventional interface treatments failed.

Accuracy: Single Domain

A significant obstacle in dealing with high-order finite-difference schemes is the formula-
tion of stable stencils near the boundaries. A uniformly high-order approximation should be
used if possible. In most high-order formulations, however, ensuring uniform accuracy up
to the boundaries is difficult while maintaining numerical stability. Fortunately, the work of
Gustafsson [17] shows that design accuracy (the designed order of accuracyp) is achieved
in advection–diffusion equations, even if a finite number of points (independent ofN) are
closed with stencils that are less accurate by one order. Thus, apth-order interior discretiza-
tion will asymptotically achievepth-orderL2 accuracy with(p− 1)th-order closures near
the boundaries.

Another concern pertaining to numerical accuracy, is the effect of imposing inaccurate
boundary conditions. In a numerical simulation, it is often impossible to obtain exact phys-
ical boundary data. It is well known that imposing approximate boundary data reduces the
accuracy of the solution, if the data is less accurate than the design order of the numerical
method. What is not clear, however, is the overall impact of interface boundaries on global
solution accuracy.
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To address these issues, we consider an advection–diffusion problem, first in a single
domain and then in multiple domains. The nonlinear Burgers’ equation is used,

∂U

∂t
+U

∂U

∂x
= ε ∂

2U

∂x2
, −1≤ x ≤ 1; t > 0, (17)

with the exact solution

U (x, t) = −a tanh

(
a

x − ct

2ε

)
+ c, −∞ < x <∞; t < 0. (18)

The solution of (17) requires imposition of boundary conditions at each end of the physical
domain. We choose Robin boundary conditions of the form

αu(−1, t)− β ∂u

∂x

∣∣∣∣
−1

= g−1(t), γu(1, t)− δ ∂u

∂x

∣∣∣∣
1

= g1(t).

We consider the scheme

PUt = −Q

(
1

2
U2

)
+ εRU+ τ1[αU (−1)−β(DU )(−1)]+ τ2[γU (1)− δ(DU )(1)],

(19)

where the matricesP, Q, R satisfy the summation by parts conditions, and the matrixD
is an approximation to the first derivative. The time-advancement scheme is a five-stage
fourth-order low-storage Runge–Kutta scheme. The time step is chosen to ensure that the
temporal error in the formulation is small relative to the spatial error. The simulation is run
to a physical time ofT = 1, and the viscosity is determined by the valueε= 5× 10−1.

At issue is the order of accuracy required in the construction ofP, Q, R, and D to
maintain design solution accuracy. We show that for design accuracyp, the matricesP−1Q
andP−1R can be of orderp− 1 locally, whereas the matrixD has to approximate the first
derivative to orderp. This is not surprising since for stabilityτ1 andτ2 are of order 1/1x,
which, when combined with boundary data terms of design accuracyp, yield local errors of
order p− 1. Thus, the physical boundary conditions imposed with design accuracyp and
local boundary closures of orderp− 1 have a similar impact on the global norm of the error.

Tables II and III present a grid-refinement study on a single domain. Table II presents a
refinement study comparing boundary closures of various accuracy. The classical fourth-
order explicit scheme is used in all cases in the domain interior, while the boundaries

TABLE II

L2 Solution Errors: Convergence Rate of “Fourth-Order” Schemes

(4,4-4-4,4) (3,3-4-3,3) (2,2-4-2,2)

N Log10 error Rate Log10 error Rate Log10 error Rate

33 −3.847 −3.694 −2.974
65 −4.082 2.31 −4.797 3.66 −4.074 3.65

129 −5.239 3.84 −5.971 3.90 −5.519 4.80
257 −6.486 4.14 −6.117 3.81 −6.284 2.54
513 −7.731 4.14 −7.276 3.85 −7.048 2.54

1025 −8.960 4.87 −9.455 3.92 −7.898 2.82
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TABLE III

L2 Solution Errors: Convergence Rate of Uni-

formly Fourth-Order Scheme Using Third-Order

Accurate Boundary Conditions

N Log10 error Rate

33 −3.004
65 −4.002 3.32

129 −4.764 2.53
257 −5.636 2.90
513 −6.531 2.97

1025 −7.898 2.82

are closed with stencils of order 4, 3, and 2, respectively. We refer to these schemes as
(4,4-4-4,4), (3,3-4-3,3), and (2,2-4-2,2). The derivative termD in the Robins’ boundary
conditions is approximated toO(1x4) in all cases. We note that the convergence rate in
Table II is fourth order for the (4,4-4-4,4) and (3,3-4-3,3) schemes, and third order for the
(2,2-4-2,2) scheme. For the (3,3-4-3,3) scheme, both the advection and diffusion stencils
are reduced by one order of accuracy near the boundaries. We note that the convergence
rate asymptotes to fourth order and that the absolute levels of error are comparable to those
obtained using the (4,4-4-4,4) scheme. The (2,2-4-2,2) scheme is second order locally at
each boundary and fourth order in the interior. (Only the diffusion terms are treated with
second-order accuracy near the boundaries, while the advection terms are treated with third-
order accuracy. Thus, any degradation in accuracy results from approximating the diffusion
terms.) We note that the convergence rate for this case asymptotes to third order, which is
a reduction in global accuracy by one order. This behavior is consistent with Gustafsson’s
[17] theory, specifically, that global solution accuracy allows a finite number of stencils to
be reduced by one order of accuracy.

Table III shows the final study, in which the advection and diffusion stencils (P−1Q and
P−1R) are uniformly fourth-order accurate (4,4-4-4,4). The physical boundary condition
(including the matrixD) is approximated toO(1x3). The convergence rate in Table III
asymptotes to third order, which is a reduction in global accuracy by one order.

This series of tests on the single domain indicates the need to impose thephysical
boundary conditions with design accuracy. However, closing the near boundary stencils
with an accuracy that is one order less than the design interior accuracy appears to be
sufficient.

Accuracy: The Multidomain Case

We now demonstrate by numerical example that these results generalize to the case of
multiple domains. Table IV shows a grid-refinement study that compares one and eight
spatial domains. The numerical test problem is the previously described Burgers’ equation
using a value ofε= 10−2. The equation is discretized as in (7) and the numerical scheme
used in both cases is the (3,3,3,3-4-3,3,3,3) SAT scheme with physical boundary conditions
(i.e., the matricesDl andDr approximate the first derivative to an accuracy ofO(1x4). We
note that the convergence rate in Table IV asymptotes to fourth order for both the one- and
eight-domain cases.
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TABLE IV

L2 Solution Errors: Convergence Rate of Fourth-Order Scheme with Third-

Order Closure at Interfaces on Multiple Domain Problem

1 domains 8 domains

N Log10 error Rate Log10 error Rate

97 −2.148 −2.125
193 −3.016 2.88 −3.143 3.38
385 −4.214 3.98 −4.485 4.45
769 −5.372 3.85 −5.656 3.38

1537 −6.505 3.76 −6.866 4.02
3063 −7.664 3.85 −8.055 3.95

Another example that directly compares the effects of boundary condition accuracy is
presented in Table V, using Burgers’ equation(ε= 10−2) as the test problem. The sixth-
order SAT scheme (5,5,5,5,5,5-6-5,5,5,5,5) is used for the spatial discretization operator,
and the interval−1≤ x≤ 1 is divided into eight even subdomains. The physical boundary
conditions and interface conditions (Dl and Dr ) are constructed to approximate the first
derivative to an accuracy of eitherO(1x6) and O(1x5). Thus, the formal accuracy of
each scheme is sixth- and fifth-order, respectively. Table V compares the solution accuracy
obtained with the two schemes. The convergence rates (based on the last four refinements)
are 5.45 and 4.17, respectively. As predicted, both schemes asymptotically converge at their
theoretical rates.

These examples demonstrate that design accuracy is achieved with multiple domains
if the physical boundary conditions are imposed with design accuracy and the numerical
closures near the interfaces are at most one order of accuracy less than the design accuracy
of the interior scheme.

Nonuniform Domain

The final problem we solve is the nonlinear Burgers’ equation with unequally spaced
subdomains and a sixth-order scheme. Details of the numerical discretization are included in
the Appendix. The Burgers’ equation in the form of Eq. (17) is solved throughout the domain
with a viscosity parameter ofε= 10−2. The domain is divided into 12 subdomains, each

TABLE V

L2 Solution Errors: Dependence on Interface Closures for Sixth-Order Scheme

Sixth-order Fifth-order

N Log10 error Rate Log10 error Rate

97 −2.357 −2.234
193 −3.339 3.26 −3.366 3.76
385 −4.766 4.74 −4.135 2.55
769 −6.718 6.48 −6.158 6.72

1537 −8.257 5.11 −7.022 2.87
3063 −9.898 5.45 −8.392 4.55
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FIG. 3. The Burgers equation solved using a sixth-order scheme with randomly generated interface points.

with the same number of points and a uniform local discretization. The domain interfaces
are placed randomly on the interval−1≤ x≤ 1. The ratio of maximum to minimum sub-
domain size is about 15:1. Figure 3 shows the solution at four different times. The “symbols”
at the top of the figure show the positions of the 11 interface points. The profiles are smooth
and monotone for this discretization. Figure 4 shows the logarithm of the solution error
plotted as a function of space on the sequence of five grids.

This problem demonstrates the stability and accuracy of the new interface treatments.
The discretization asymptote to a convergence rate of sixth order on the sequence of grids.
Table VI shows the convergence rate of the calculations, for two different values of the
parameterε. The steep gradients are resolved to high-order on all grids forε= 10−2. For
ε= 2× 10−3, the two coarsest grids are not yet achieving high-order accuracy, and two-point
grid oscillations exist in the solution. Further reduction ofε causes numerical instability,

TABLE VI

L2 Solution Errors: Convergence of Sixth-Order Scheme with

12 Subdomains and Interfaces Distributed Randomly

ε= 10−2 ε= 2× 10−3

N Log10 error Rate Log10 error Rate

145 −3.090 −1.376
289 −4.641 5.15 −1.865 1.62
577 −5.915 4.22 −3.053 3.95

1153 −7.520 5.33 −4.574 5.05
2305 −9.370 6.15 −5.834 4.18
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FIG. 4. Errors obtained from Burgers equation solved on a sequence of grids with a sixth-order scheme.

emanating from the interface location, as the gradients pass the interface. Increasing the
robustness of the interface conditions for marginally resolved/discontinuous cases is the
focus of current research.

6. CONCLUSIONS

We focus on high-order finite difference schemes, which satisfy the summation-by-parts
(SBP) discretization framework. We show stable and conservative interface treatments
of arbitrary spatial accuracy for the linear advection–diffusion equation. Problems with
multiple domains and abruptly changing mesh sizes are considered.

Finite-difference operators are shown to admit design accuracy (pth-order global ac-
curacy) when(p− 1)th-order stencil closures are used near boundaries if the “physical”
boundary conditions (and interface conditions) are imposed withpth-order accuracy. Finite-
difference operators of up to sixth order are constructed which satisfy the constraints of the
new interface procedures.

Accurate sixth-order calculations are achieved for the nonlinear Burgers equation on a
12-subdomain problem having randomly distributed interfaces.

APPENDIX I: STABILITY

Here we show the algebra involved in proving Theorem 3.1. We begin by restating of the
stability condition presented in Eq. (11) governing the total energy of the system,

d

dt

[‖u‖2Pl
+ ‖v‖2Pr

] ≤ wT
i Bwi , (20)
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wherewi = [ui , vi , (Dl u)i , (Dr v)i ], and the boundary matrix defined in Eq. (12) is defined
by

B =


(−a+ 2σ1) −(σ1+ σ3) ε(1+ σ2) −εσ2

−(σ1+ σ3) a+ 2σ3 −εσ4 ε(−1+ σ4)

ε(1+ σ2) −εσ4 −2εαl 0

−εσ2 ε(−1+ σ4) 0 −2εαr

 . (21)

The stability of this matrix is easier to analyze if it is rotated with a similarity transfor-
mation. Define the new vector̂w= Sw such that

ŵ = 1√
2


ui − vi

ui + vi

(Dl u)i − (Dr v)i

(Dl u)i + (Dr v)i

 = 1√
2


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1




ui

vi

(Dl u)i
(Dr v)i

 . (22)

The similarity rotation matrix has the propertyST= S−1 as can easily be verified. The
rotation matrixS can be used to transform the stability condition defined by Eq. (11) into
the equivalent condition:

wT
i Mi wi = wT

i STSMi STSwi = ŵTM̂i ŵ ≤ 0, (23)

where

M̂i =


2(σ1+ σ3) −(−σ1+ σ3+ a) ε(σ2+ σ4) ε

−(−σ1+ σ3+ a) 0 −ε(−σ2+ σ4− 1) 0

ε(σ2+ σ4) −ε(−σ2+ σ4− 1) −ε(αr + αl ) ε(αr − αl )

ε 0 ε(αr − αl ) −ε(αr + αl )

 .
(24)

To ensure negative definiteness, every submatrix in the matrixM̂i must be negative def-
inite. We observe by inspection that(σ1+ σ3)≤ 0 is a necessary condition. Analyzing the
2× 2 submatrices along the diagonal, we obtain the necessary conditions(−σ1+ σ3+a)= 0
andε(−σ2+ σ4− 1)= 0. Substituting the equalities(−σ1+ σ3+a)= 0 and(−σ2+ σ4−
1)= 0 into the matrixM̂i yields

M̂i =


2(2σ1− a) 0 ε(2σ2+ 1) ε

0 0 0 0

ε(2σ2+ 1) 0 −ε(αr + αl ) ε(αr − αl )

ε 0 ε(αr − αl ) −ε(αr + αl )

 . (25)

A symmetric matrix can be rotated into diagonal form by an orthogonal matrix, making
the condition of negative semi-definiteness

ŵTÛT Di Û ŵ ≤ 0,

whereÛ is the orthogonal matrix that satisfiesÛT Di Û = M̂i . Pre- and postmultiplication
of M̂i by suitable rotation matricesMλ= RT

1 M̂i R1 yield the equivalent condition

ŵT RT
1 ÛT Di Û R1ŵ ≤ 0.
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The matrixR1, chosen to yield a diagonal expression for the matrixMλ is

L1 =


1 0 0 0
0 1 0 0

L3,1 0 1 0
L4,1 0 L4,3 1

 (26)

with

L3,1 = −ε(2σ2+ 1)

2(2σ1− a)

L4,1 = −2ε(αrσ2− αlσ2+ αr )

ε
(
4σ 2

2 + 4σ2+ 1
)+ (4σ1− 2a)(αr + αl )

L4,3 = −(ε(2σ2+ 1)+ (−4σ1+ 2a)(αr − αl ))

ε
(
4σ 2

2 + 4σ2+ 1
)+ (4σ1− 2a)(αr + αl )

.

The diagonal elements ofMλ are

λ1 = 2(2σ1− a)

λ2 = 0

λ3 =
−ε(ε(4σ 2

2 + 4σ2+ 1
)+ (4σ1− 2a)(αr + αl )

)
2(2σ1− a)

λ4 =
−4ε

(
αr ε(σ2+ 1)2+ αl εσ

2
2 + (4σ1− 2a)αlαr

)
ε
(
4σ 2

2 + 4σ2+ 1
)+ (4σ1− 2a)(αr + αl )

.

These eigenvalues must be less than or equal to zero to ensure stability of the interface
condition. The resulting condition of stability is

σ1 ≤ a

2
− ε
[
σ 2

2

4αr
+ σ 2

4

4αL

]
.

Combining this expression with the constraintsσ3= σ1−a and σ4= σ2+ 1 yields the
conditions of Theorem 3.1.

APPENDIX II: STENCILS

We now present the specific form of the stencils that satisfy the SBP stability requirements
and the accuracy requirements shown necessary in the previous numerical study. At second
order, the discretization matrix for the advection terms that satisfy the constraintA1= P−1Q
is

A = 1

21x



−2 2
−1 0 1

· · ·
· · ·
· · ·
−1 0 1
−2 2


, (27)
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where

P = 1x



1
2

1
·
·
·

1
1
2


; Q = 1

2



−1 1
−1 0 1

· · ·
· · ·
· · ·
−1 0 1
−1 1


. (28)

The discretization matrix for the diffusion terms that satisfies the constraintA2=
P−1(−ST R+ D)S is

A = 1

(1x)2



1 −2 1
1 −2 1
· · ·
· · ·
· · ·

1 −2 1
1 −2 1


, (29)

where

S= 1

1x



− 3
2 2 − 1

2

1
·
·
·

1
1
2 −2 3

2


; D =



−1
0
·
·
·

0
1


(30)

and

R= 1

(1x)



4
9 − 2

9
2
9

− 2
9

10
9 − 10

9
2
9 − 10

9
19
9 −1

−1 2 −1

· · ·
· · ·
· · ·
−1 2 −1

−1 19
9 − 10

9 − 2
9

− 10
9 − 10

9
2
9

− 2
9 − 2

9
4
9



. (31)

The matrixR can be shown to be positive definite (and symmetric).
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A fourth-order discretization that satisfies the SBP constraints was originally derived
in the work of Strand [12]. The coefficientsr 1 andr 2 below are different from those
proposed by Strand and are chosen so that the resulting discretizationA1= P−1Q has the
standard four-point third-order stencil at the first grid point. This method of constraining free
parametersr 1, r 2, . . . generalizes to the sixth-order and eighth-order cases, while providing
good boundary accuracy and dissipation.

The values ofr 1 andr 2 are

r 1 = −(2177
√

295369− 1166427)

25488 (32)

r 2 = (66195
√

53
√

5573− 35909375)

101952

and the matricesP andQ are

P = 1x



−(216r 2+ 2160r 1− 2125)
12960

(81r 2+ 675r 1+ 415)
540

−(72r 2+ 720r 1+ 445)
1440

−(108r 2+ 756r 1+ 421)
1296

(81r 2+ 675r 1+ 415)
540

−(4104r 2+ 32400r 1+ 11225)
4320

(1836r 2+ 14580r 1+ 7295)
2160

−(216r 2+ 2160r 1+ 665)
4320

−(72r 2+ 720r 1+ 445)
1440

(1836r 2+ 14580r 1+ 7295)
2160

−(4104r 2+ 32400r 1+ 12785)
4320

(81r 2+ 675r 1+ 335)
540

−(108r 2+ 756r 1+ 421)
1296

−(216r 2+ 2160r 1+ 655)
4320

(81r 2+ 675r 1+ 335)
540

−(216r 2+ 2160r 1− 12085)
12960

1


(33)

and

Q=



(−1)

2

−(864r 2+ 6480r 1+ 305)
4320

(216r 2+ 1620r 1+725)
540

−(864r 2+ 6480r 1+ 3335)
4320

(864r 2+ 6480r 1+ 305)
4320

0 −(864r 2+ 6480r 1+ 2315)
1440

(108r 2+810r 1+ 415)
270

−(216r 2+ 1620r 1+ 725)
540

(864r 2+ 6480r 1+ 2315)
1440

0 −(864r 2+ 6480r 1+ 785)
4320

−1
12

(864r 2+ 6480r 1+ 3335)
4320

−(108r 2+ 810r 1+ 415)
270

(864r 2+ 6480r 1+ 785)
4320

0 8
12

−1
12

1
12

−8
12

0 8
12

−1
12

· · · · ·


.

(34)

Only the inflow boundary portion of the matricesP andQ is shown. The outflow coefficients
are the negative transpose of the inflow coefficients. The matrixP is symmetric and positive
definite.

The discretization matrix for the diffusion terms that satisfies the constraintA2=
P−1(−ST R+ D)S is:

A = 1

(1x)2



35
12

−26
3

19
2

−14
3

11
12

11
12

−5
3

1
2

1
3

−1
12

−1
12

16
12

−30
12

16
12

−1
12

· · · · ·
· · · · ·

· · · · ·
−1
12

16
12

−30
12

16
12

−1
12

−1
12

1
3

1
2

−5
3

11
12

11
12

−14
3

19
2

−26
3

35
12



, (35)
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where

S= 1

1x



− 25
12 4 −3 4

3 − 1
4

1
·

·
·

1
− 1

2 − 4
3 −3 −4 25

12


; D =



−1
0
·
·
·

0
1


. (36)

The matrixR is too complicated to report here but it can be shown to be positive definite.
Note that the matrixR is not needed in the implementation of the scheme and is only used for
proving stability. This numerical scheme is referred to as (3,3,3,3-4-3,3,3,3), which denotes
the fact that the four points nearest to the boundary are closed with third-order formulas.

A sixth-order discretization that satisfies the SBP constraints was originally derived in
the work of Strand [12]. The coefficientsr 1, r 2, andr 3 below are different from those
proposed by Strand and are chosen so that the resulting discretizationA1= P−1Q has the
standard six-point fifth-order stencil at the first grid point. This choice produces remarkably
good stability characteristics at the boundary. The coefficients are

r 1 = −3.6224891259957

r 2 = 96.301901955532 (37)

r 3 = −609.5813881563.

The symmetricP and nearly skew-symmetricQ matrices have the entriesA1= P−1Q,
where

p(1, 1) = −(14400r 2+ 302400r 1− 7420003)

36288000

p(1, 2) = −(75600r 3+ 1497600r 2+ 11944800r 1− 59330023)

21722800

p(1, 3) = −(9450r 3+ 202050r 2+ 1776600r 1− 7225847)

340200

p(1, 4) = (900r 2+ 18900r 1− 649)

226800

p(1, 5) = (86400r 3+ 1828800r 2+ 15854400r 1− 66150023)

3110400

p(1, 6) = (378000r 3+ 7747200r 2+ 65167200r 1− 279318239)

188640000

p(2, 2) = (302400r 3+ 6091200r 2+ 49896000r 1− 210294289)

7257600

p(2, 3) = (3780r 3+ 82575r 2+ 741825r 1− 2991977)

34020

p(2, 4) = (5400r 3+ 104400r 2+ 810000r 1− 3756643)

129600

p(2, 5) = −(529200r 3+ 11107200r 2+ 95508000r 1− 400851749)

2419200
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p(2, 6) = (86400r 3+ 1828800r 2+ 15854400r 1− 65966279)

3110400

p(3, 3) = −(51300r 3+ 1094400r 2+ 9585000r 1− 39593423)

64800

p(3, 4) = (120960r 3+ 2584800r 2+ 22680000r 1− 93310367)

181440

p(3, 5) = (5400r 3+ 104400r 2+ 810000r 1− 3766003)

129600

p(3, 6) = (900r 2+ 18900r 1− 37217)

226800

p(4, 4) = −(17100r 3+ 364800r 2+ 3195000r 1− 13184701)

21600

p(4, 5) = (3780r 3+ 82575r 2+ 741825r 1− 2976857)

34020

p(4, 6) = −(1890r 3+ 40410r 2+ 355320r 1− 1458223)

68040

p(5, 5) = (302400r 3+ 6091200r 2+ 49896000r 1− 213056209)

7257600

p(5, 6) = −(75600r 3+ 1497600r 2+ 11944800r 1− 54185191)

21722800

p(6, 6) = −(14400r 2+ 302400r 1− 36797603)

36288000 (38)

q(1, 1) = (−1)

2

q(1, 2) = (415800r 3+ 8604000r 2+ 72954000r 1− 283104553)

32659200

q(1, 3) = (120960r 3+ 2672640r 2+ 24192000r 1− 100358119)

6531840

q(1, 4) = −(25200r 3+ 542400r 2+ 4788000r 1− 19717139)

403200

q(1, 5) = (604800r 3+ 13363200r 2+ 120960000r 1− 485628701)

32659200

q(1, 6) = (41580r 3+ 860400r 2+ 7295400r 1− 31023481)

3265920

q(2, 2) = 0

q(2, 3) = −(9450000r 3+ 200635200r 2+ 1747116000r 1− 7286801279)

32659200

q(2, 4) = (21168000r 3+ 449049600r 2+ 3907008000r 1− 16231108387)

32659200

q(2, 5) = −(165375r 3+ 3516300r 2+ 30665250r 1− 126996371)

453600
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q(2, 6) = (604800r 3+ 13363200r 2+ 120960000r 1− 482536157)

32659200

q(3, 3) = 0

q(3, 4) = −(6993000r 3+ 148096800r 2+ 1286334000r 1− 5353075351)

8164800

q(3, 5) = (21168000r 3+ 449049600r 2+ 3907008000r 1− 16212561187)

32659200

q(3, 6) = −(75600r 3+ 1627200r 2+ 14364000r 1− 58713721)

1209600

q(4, 4) = 0

q(4, 5) = −(9450000r 3+ 200635200r 2+ 1747116000r 1− 7263657599)

32659200

q(4, 6) = (604800r 3+ 13363200r 2+ 120960000r 1− 485920643)

32659200

q(5, 5) = 0

q(5, 6) = (415800r 3+ 8604000r 2+ 72954000r 1− 286439017)

32659200

q(6, 6) = 0.

The matrixP is symmetric and positive definite for this choice of parameters.
The discretization matrix for the diffusion terms that satisfies the constraintA2=

P−1(−ST R+ D)S is

A = 1

180(1x)2


+812 −3132 +5265 −5080 +2970 −972 +137

+137 −147 −255 +470 −285 +93 −13

−13 +228 −420 +200 +15 −12 +2

2 −27 270 −490 270 −27 2

 , (39)

where

S= 1

1x


(−49)

20 6 (−15)
2

20
3

(−15)
4

6
5

(−1)
6

1
·

 , D =
−1

0
·

 . (40)

The matrixR is too complicated to report here but can be shown to be positive definite.
Again, the matrixR is not necessary for implementing the numerical method, being used
only for proving stability.

Finally, we note that SBP boundary closures are more complicated than conventional
discretizations and that inadvertent mistakes in their implementation could have profound
consequences on the stability and accuracy of the procedure. As such, we provide “black-
box” subroutines which implement all the derivative operators used in this study. Send
requests for these routines to m.h.carpenter@larc.nasa.gov.
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